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Abstract

In this article we consider the volatility inference in the presence of both market microstructure noise and
endogenous time. Estimators of the integrated volatility in such a setting are proposed, and their asymptotic
properties are studied. Our proposed estimator is compared with the existing popular volatility estimators
via numerical studies. The results show that our estimator can have substantially better performance when
time endogeneity exists.
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years there has been growing interest in the inference for asset price volatilities
based on high-frequency financial data. Suppose that the latent log price X = (X t ) follows an
Itô process

d X t = µt dt + σt dWt , for t ∈ [0, 1], (1)

where W is a standard Brownian motion, and the drift (µt ) and volatility (σt ) are both stochastic
processes. Econometric interests are usually in the inference for the integrated volatility, i.e.,
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quadratic variation, of the log price process

⟨X, X⟩t =

 t

0
σ 2

s ds.

A classical estimator from probability theory (see, for example, [16,7]) for this quantity is the
realized volatility (RV) based on the discrete time observations

X ti for 0 = t0 < t1 < · · · < tN1 = 1,

where ti ’s may be a sequence of stopping times. The RV [X, X ]t is defined as the sum of squared
log returns

[X, X ]t =


ti ≤t

(1X ti )
2,

where 1X ti = X ti − X ti−1 for i ≥ 1. Under mild conditions, when the observation frequency

N1 goes to infinity, [X, X ]t
p

−→⟨X, X⟩t . Furthermore, when the observation times (ti )i≥0 are
independent of X , a complete asymptotic theory for the estimator [X, X ]t is available, which says
that

√
N1([X, X ]t −⟨X, X⟩t ) is asymptotically a mixture of normal whose mixture component is

the variance equal to 2
 t

0 σ 4
s d Hs , where Ht is the “quadratic variation of time” process provided

that the following limit exists (see [23] or [25])

plimN1→∞N1


ti ≤t

(1ti )
2

= Ht ,

where “plim” stands for limit in probability. The quantity
 t

0 σ 4
s d Hs can be consistently

estimated by the quarticity N1/3 · [X, X, X, X ]t := N1/3 ·


ti ≤t (1X ti )
4.

The above provides a foundation for estimating the integrated volatility based on high
frequency data. However, when it comes to the practical side, the assumptions for RV are often
violated. Two aspects are of great importance. They are

(a) Market microstructure noise; and
(b) Endogeneity in the price sampling times.

For the first issue, recently there has seen a large literature on estimating quantities of interest
with prices observed with microstructure noise. One commonly used assumption is that the
noises are additive and one observes

Yti := X ti + εti , for i = 0, 1, . . . , N1. (2)

It is often assumed that the noise (εti )i≥1 is an independent sequence of white noise and the
sampling times (ti )i≥1 are independent of X . Various estimators of integrated volatility have
been proposed. See, for example, two scales realized volatility of Zhang, Mykland and Aı̈t-
Sahalia [34], multi-scale realized volatility by Zhang [33], realized Kernels of Barndorff-Nielsen
et al. [6], the pre-averaging method by Jacod et al. [15] and the QMLE method by Xiu [31].
Related works include Aı̈t-Sahalia, Mykland and Zhang [4], Bandi and Russell [5], Fan and
Wang [9], Hansen and Lunde [13], Kalnina and Linton [17], Li and Mykland [19], Phillips and
Yu [26] among others.

In contrast, issue (b) has only recently been brought to researchers’ attention. The case when
the sampling times are irregular or random but (conditionally) independent of the price process
has been studied by Aı̈t-Sahalia and Mykland [3], Duffie and Glynn [8], Meddahi, Renault and
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Werker [22], Hayashi, Jacod and Yoshida [14] among others. A recent work of Renault and
Werker [28] provides a detailed discussion on the issue of possible endogenous effect that stems
from the price sampling times in a semi-parametric context. Li et al. [20] further investigate the
time endogeneity effect on volatility estimation in a nonparametric setting. Volatility estimation
in the presence of endogenous time in some special situations like when the observation times
are hitting times has been studied in [10,12], and in a general situation has also been studied
in [11]. In [20], the analysis was carried out by considering the time endogeneity effect which is
reflected by

plim


N1[X, X, X ]t (3)

where
√

N1[X, X, X ]t :=
√

N1


ti ≤t (1X ti )
3 is the tricity. Interestingly, the literature usually

neglects the important information one could draw from the quantity [X, X, X ]t , which can be
interpreted as a measure of the covariance between the price process and time as shown in [20]. Li
et al. [20] also conducted empirical work that provides compelling evidence that the endogenous
effect does exist in financial data, i.e., plim

√
N1[X, X, X ]t ≠ 0.

Although individually each issue (a) or (b) has been studied in the literature, there is
a lack of studies that take both the microstructure noise and time endogeneity effect into
consideration. Robert and Rosenbaum [30] study the estimation of the integrated (co-)volatility
for an interesting model where the observation times are triggered by exiting from certain
“uncertainty zones”, in which case both microstructure noise and time endogeneity may exist.
In this paper, we consider the presence of both microstructure noise and time endogeneity in a
general setting.

The paper is organized as follows. The setup and assumptions are given in Section 2. The
main results are given in Section 3. In Section 4, simulation studies are performed in which our
proposed estimator is compared with several existing popular estimators. Section 5 concludes.
The proofs (except that of Proposition 1) are given in the Appendix A; the proof of Proposition 1
is given in the supplementary article by Li, Zhang and Zheng [21].

2. Setup and assumptions

Assumption 1. We assume the setting of (1) and (2) and that there is a filtration (Ft )t≥0, with
respect to which W, µ and σ in (1) are adapted and (ti )i≥1 are (Ft )-stopping times. Furthermore,
the filtration (Ft ) is generated by finitely many continuous martingales.

In the Introduction, we adopted the notation N1 for the number of observed prices over time
interval [0, 1]. Here, we generalize this and denote

Nt = max{i : ti ≤ t}.

In developing limiting results, one should be able to rely on some index variable approaching

infinity/zero. In our context, we assume that maxi 1ti
p

→ 0 is driven by some underlying force,
for instance, n → ∞, where n (non-random) characterizes the sampling frequency over time
interval [0, 1].

We aim at effectively estimating ⟨X, X⟩t based on our general setup. A local averaging
approach is adopted. We consider the time endogeneity on the sub-grid level. Take the single
sub-grid case for illustration, the sub-sample S = S0 := {tp, tp+q , . . . , tp+iq , . . .} is constructed
by choosing every qth observation (starting from the pth observation) from the complete grid.



Y. Li et al. / Stochastic Processes and their Applications 123 (2013) 2696–2727 2699

Fig. 1. Grid allocation for local averaging.

Here p is the number of observations that we take in constructing local average, q is the size of
blocks, and both are non-random numbers just as n. Define

ℓ :=


n − p

q


, (4)

which satisfies that ℓq ≤ n, and as p shall be taken as o(n), ℓq/n → 1 as n → ∞. As n measures
the sampling frequency of the complete grid, ℓ measures that of the sub-grid S . Moreover, for
notational ease, for k = 0, 1, . . . , q − 1, we define

tk
i, j := tiq+p− j+k, for i = 0, 1, 2, . . . , and j = 0, 1, 2, . . . , p − 1, (5)

and let

ti, j = t0
i, j .

Analogous to (3), we consider the quantity
√

ℓ[X, X, X ]
S
t =

√
ℓ


ti,0≤t (X ti,0 − X ti−1,0)
3. The

superscript S indicates the calculation being performed is based on the designated sub-grid. This
convention applies to other sub-grids. Moving the sub-grid S one step forward forms sub-grid
S1, continuing this process gives sub-grid S2 and so on till the (q − 1)th sub-grid Sq−1. Fig. 1
provides a graphical demonstration of our grid allocation. Further, on the sub-grid S , we define
the number of observations up to time t in sub-grid S as

L t := max{i : ti,0 ≤ t}.

Naturally, L1 and N1 satisfy L1 ≤ N1/q .

3. Main results

We start with results based on a single sub-grid and then proceed to the multiple sub-grids
case.

3.1. Single sub-grid: local averaging

A natural and effective way of reducing the effect of microstructure noise in estimating
⟨X, X⟩t is averaging; see, e.g., [15,27]. Following Jacod et al. [15], we average every p
observations that precede each observation in the sub-sample S to obtain a new sequence of
observations, which we denote by (Y ti,0)i≥0. Based on this sequence of observations, we obtain
a single-grid biased local averaging estimator. To be specific,

Y ti,0 =
1
p

p−1
j=0

Yti, j , for i = 0, 1, 2, . . . .
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The RV based on the Y sequence is denoted by

[Y , Y ]
S
t =


ti,0≤t


1Y ti,0

2
,

where 1Y ti,0 = Y ti,0 − Y ti−1,0 for i ≥ 1. After correcting the bias due to noise, the single-grid
local averaging estimator is defined as

⟨X, X⟩
L A
t := [Y , Y ]

S
t −

2L t

p
σ 2

ε , for t ∈ [0, 1], (6)

whereσ 2
ε = [Y, Y ]1/2N1, (7)

is an estimator of σ 2
ε , see Lemma 1 in Appendix A.1, and [Y, Y ]1 is the RV based on all

observations up to time 1. We now state conditions that lead to the theorem for the single sub-grid
case:

C(1). µt and σ 2
t ≥ c > 0 are integrable and locally bounded;

C(2). n/N1 = Op(1);
C(3). ∆n := max1≤i≤N1 |ti − ti−1| = Op(1/n1−η) for some nonnegative constant η;

C(4). L t/ℓ
p

−→
 t

0 rsds in D[0, 1], where rs is an adapted integrable process (and hence in
particular, N1/n = Op(1));

C(5). the microstructure noise sequence (εti )i≥0 consists of independent random variables with
mean 0, variance σ 2

ε , and common finite third and forth moments, and is independent
of F1.

The following theorem characterizes the asymptotic property of the estimator (6).

Theorem 1. Assume Assumption 1 and conditions C(1)–C(5) . Suppose that η ∈ [0, 1/6), and
ℓ ∼ Cℓnα and p ∼ C pnα for some 0 < α < 2(1 − η)/5 and positive constants Cℓ and C p, and
also that

ℓ[X, X, X, X ]
S
t

p
−→

 t

0
usσ

4
s ds for every t ∈ [0, 1], and (8)

√
ℓ[X, X, X ]

S
t

p
−→

 t

0
vsσ

3
s ds for every t ∈ [0, 1], (9)

where [X, X, X, X ]
S
t =


ti,0≤t (X ti,0 − X ti−1,0)

4, and usσ
4
s and v2

s σ 4
s are both integrable. Then,

stably in law,

√
ℓ


⟨X, X⟩
L A
t − ⟨X, X⟩t


H⇒

2
3

 t

0
vsσsd Xs  

asymptotic bias

+

 t

0


2
3

us −
4v2

s

9


σ 4

s

+ 12rs


Cℓ

C p
σ 2

ε

2

+ 8
Cℓ

C p
σ 2

s σ 2
ε

1/2

d Bs

where Bt is a standard Brownian motion independent of F1.
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Proof of the theorem is given in Appendix A.2.
In the literature it is often assumed that the mesh ∆n = Op(1/n), in other words, η = 0 in

Condition C(4). In this case, the convergence rate in Theorem 1 can be arbitrarily close to n1/5.

Remark 1. Unlike in the full grid setting where a nonzero limit of tricity can be easily generated
by letting the sampling times be hitting times of asymmetric barriers (see for instance Examples
4 and 5 of Li et al. [20]), in the subgrid case a nonzero limit of tricity is far less common, and in
particular under the settings of both Examples 4 and 5 of Li et al. [20], the limit in (9) vanishes.
However as we found in simulation studies (not all reported), even in these situations, adopting
the (finite sample) bias correction discussed in Section 3.3 can substantially reduce the (finite
sample) bias. Similar remark applies to the estimator in Theorem 2.

3.2. Multiple sub-grids: moving average

We show in this subsection that for any ε > 0, rate n1/4−ε consistency can be achieved by
using moving average based on multiple sub-grids. For that purpose, we need such notations as
[Y , Y ]

Sk
t , i.e. the RV of locally averaged Y process over the kth sub-grid, for the same operations

that are performed over the 0th sub-grid S = S0 being adjusted to the kth sub-grid Sk . To
be specific, we take [Y , Y ]

Sk
t for example; other notation with superscript k or Sk has similar

interpretation. Similar to the definition of [Y , Y ]
S
t (i.e. [Y , Y ]

S0
t ), we first define

Y tk
i,0

:=
1
p

p−1
j=0

Ytiq+p+k− j , for i = 0, 1, 2, . . . ,

where, recall that tk
i,0 = tiq+p+k denotes the i th observation time on the kth sub-grid. The RV of

locally averaged Y process over the kth sub-grid is defined as follows

[Y , Y ]
Sk
t :=


tk
i,0≤t

(1Y tk
i,0

)2,

where 1Y tk
i,0

= Y tk
i,0

− Y tk
i−1,0

for i ≥ 1. Assume the following conditions that lead to the

asymptotic result on multiple sub-grids:

C(6). ℓ


ti ≤t

q−1
j=1

q− j
q 1X ti− j

2
(1X ti )

2 p
−→

 t
0 wsσ

4
s ds for every t ∈ [0, 1], where wsσ

4
s

is integrable;

C(7). 1
q

q−1
k=0

√
ℓ[X, X, X ]

Sk
t

p
−→

 t
0 v̄sσ

3
s ds for every t ∈ [0, 1], where v̄2

s σ 4
s is integrable.

Define

A(p, q) :=
2
q

p−1
j=1


j2

p2 −
j

p


.

Under the conditions of Theorem 2, A(p, q) ∼ −n4α−2CℓC p/3.

Theorem 2. Assume Assumption 1 and conditions C(1)–C(7). Suppose that η ∈ [0, 1/9), and
ℓ ∼ Cℓnα and p ∼ C pn3α−1 for some max(4η, 1/3) < α < (1 − η)/2 and positive constants
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Cℓ and C p. Then, stably in law,

√
ℓ


1
q

q−1
k=0

[Y , Y ]
Sk
t −

2Nt

pq
σ 2

ε − (1 + A(p, q))⟨X, X⟩t



H⇒
2
3

 t

0
v̄sσs d Xs  

asymptotic bias

+

 t

0


4ws −

4
9
v̄2

s


σ 4

s +
8C3

ℓ

C p
rs(σ

2
ε )2

1/2

d Bs,

where Bt is a standard Brownian motion that is independent of F1.

Proof of the theorem is given in Appendix A.3.
If one assumes that ∆n = Op(1/n), then η = 0, and the convergence rate in the above

theorem can be arbitrarily close to n1/4.

Remark 2. If times are exogenous, Condition C(6) can be reduced to a similar assumption as
(48) on p. 1401 of Zhang, Mykland and Aı̈t-Sahalia [34]. The limit is then related to quarticity
and can be consistently estimated; see, e.g., [15,6]. In general, when observation times can be
endogenous, the limit is expected to be different.

3.3. Bias correction

Since the estimator constructed based on multiple grids achieves a better rate of convergence,
below we shall mainly focus on the moving average setting. Based on the above result, we have
the following (infeasible) unbiased estimator:

⟨X, X⟩
(0)

1 :=

−
2
3

 1
0 v̄sσsd Xs +

√
ℓ


1
q

q−1
k=0

[Y , Y ]
Sk
1 −

2N1
pq
σ 2

ε


√

ℓ(1 + A(p, q))
.

The following corollary describes the asymptotic property for this estimator.

Corollary 1. Under the assumptions of Theorem 2, stably in law,

√
ℓ


⟨X, X⟩

(0)

1 − ⟨X, X⟩1


H⇒

 1

0


4ws −

4
9
v̄2

s


σ 4

s +
8C3

ℓ

C p
rs(σ

2
ε )2

1/2

d Bs,

where Bt is a standard Brownian motion that is independent of F1.

Proof. This is just a rearrangement of the convergence in Theorem 2. �

To improve over ⟨X, X⟩
(0)

1 and build a feasible unbiased estimator, a consistent estimator for
the bias term 2/3

 t
0 v̄sσs d Xs is needed. This is the issue that we deal with next. Define

F (2)
n (t) :=

√
ℓ


1
q

q−1
k=0

[Y , Y ]
Sk
t −

2Nt
pq
σ 2

ε


√

ℓ(1 + A(p, q))
, and f (2)(t) := σ 2

t , (10)

F (3)
n (t) :=

1
q

q−1
k=0

√
ℓ[Y , Y , Y ]

Sk
t , and f (3)(t) := v̄tσ

3
t .
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For a given partition (τi )i≥0 over [0, 1], we define

f ( j)
n (t) := (F ( j)

n (τi ) − F ( j)
n (τi−1))/(τi − τi−1), for t ∈ [τi , τi+1), for j = 2, 3. (11)

We then have that stably in law,

√
ℓ


F (2)
n (t) − ⟨X, X⟩t


H⇒

2
3

 t

0
v̄sσsd Xs +

 t

0


4ws −

4
9
v̄2

s


σ 4

s

+
8C3

ℓ

C p
rs(σ

2
ε )2

1/2

d Bs .

Define

γ (α, η) := min{−2α + 1 − 3η/2; α/2 − η/2; 7α/2 − 3/2; 3α/2 − 1/2 − η;

5α/2 − 1 − η/2}.

And assume

C(7’)
 1

q

q−1
k=0

√
ℓ[X, X, X ]

Sk
t −

 t
0 v̄sσ

3
s ds

 /δn
p

−→ 0 in D[0, 1] for a (nonrandom) sequence

(δn)n≥1 with δn → 0 and 1/δn = o

nγ (α,η)


.

We have the following.

Proposition 1. Assume the conditions of Theorem 2, C(7′) and 3/7 < α < (2 − 3η)/4 with
η ∈ [0, 2/21). Suppose f ( j)(t) is a.s. continuous and bounded on [0, 1] for j = 2, 3. Moreover,
define a partition [τi , τi+1] := [tid1q , t(i+1)d1q ] which is a block of d1q time intervals over the
complete grid with 1/d1 = o


1/n1−2α


, maxi |τi − τi−1| = op(1) and δn/ mini |τi − τi−1| =

Op(1); and let

1Y τi :=
1
p

p−1
j=0

Ytid1q+p− j −
1
p

p−1
j=0

Yt(i−1)d1q+p− j .

Then 
τi ≤t

f (3)
n (τi−1)

f (2)
n (τi−1)

1Y τi

p
−→

 t

0
v̄sσs d Xs in D[0, 1].

Proof of Proposition 1 is given in the supplementary article of Li, Zhang and Zheng [21].
According to the above proposition, a consistent estimator for the bias 2/3

 1
0 v̄sσs d Xs is

given by

B :=
2
3


τi ≤1

f (3)
n (τi−1)

f (2)
n (τi−1)

1Y τi .

Finally, we define our feasible unbiased estimator as

⟨X, X⟩1 :=

−B +
√

ℓ


1
q

q−1
k=0

[Y , Y ]
Sk
1 −

2N1
pq
σ 2

ε


√

ℓ(1 + A(p, q))
.
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The following theorem gives the CLT for our final estimator.

Theorem 3. Under the assumptions of Theorem 2 and Proposition 1, stably in law,

√
ℓ


⟨X, X⟩1 − ⟨X, X⟩1


H⇒

 1

0


4ws −

4
9
v̄2

s


σ 4

s +
8C3

ℓ

C p
rs(σ

2
ε )2

1/2

d Bs,

where B is a standard Brownian motion independent of F1.

4. Simulation studies

In this section, we conduct simulation studies. We investigate the performance of our proposed
estimator ⟨X, X⟩1 compared with existing popular estimators in both endogenous and non-
endogenous cases. We shall use two data generating mechanisms for X : (1) a constant volatility
Brownian bridge and (2) a stochastic volatility Heston bridge. In each case, we start the latent
process X at X0 = log(5), let the standard deviation of the noise be σε := (σ 2

ε )1/2
= 0.0005 and

simulate 1000 sample paths for observed price process Y .

4.1. Estimators used for comparison

Below we briefly recall four commonly used volatility estimators: the two scales realized
volatility (TSRV) of Zhang, Mykland and Aı̈t-Sahalia [34], the multi-scale realized volatility
(MSRV) of Zhang [33], the realized Kernel estimator of Barndorff-Nielsen et al. [6], and the
pre-averaging estimator of Jacod et al. [15].

The (small-sample adjusted) TSRV estimator is given by

⟨X, X⟩
tsrv
1 =


1 −

1
Ktsrv

−1


1
Ktsrv

Ktsrv
k=1

[Y, Y ]
(k)
1 −

1
Ktsrv

[Y, Y ]1


,

where the data is divided into Ktsrv non-overlapping sub-grids and [Y, Y ]
(k)
1 is the RV on the

kth sub-grid. Zhang, Mykland and Aı̈t-Sahalia [34] provided a guideline on the choice of the
grid allocation. If we pretend that the volatility were constant, then the optimal choice for grid

allocation is Ktsrv = ctsrv N 2/3
1 , where, in practice, one can set ctsrv =


12([Y,Y ]1/(2N1))

2

([Y,Y ]
sub
1 )2

1/3

,

where [Y, Y ]
sub
1 is the RV based on sparse sampling. Here, we implement [Y, Y ]

sub
1 at 5 min

frequency.
The MSRV estimator, which is a rate-optimal extension to TSRV, is given as follows

⟨X, X⟩
msrv
1 =

Kmsrv
j=1

λ j
1
j

j
k=1

[Y, Y ]
(k)
1 ,

where λ1 = a1 + ((N1 + 1)/2)−1, λ2 = a2 − ((N1 + 1)/2)−1 and λi = ai for i ≥ 3 with ai =

h(i/Kmsrv)i/K 2
msrv − h′(i/Kmsrv)i/(2K 3

msrv), for i = 1, . . . , Kmsrv, where Kmsrv = cmsrv N 1/2
1

and h(x) = 12x − 6. The optimal choice of cmsrv when the volatility is constant is

cmsrv =


T3 + T4 +


(T3 + T4)

2
+ 12T1T2

1/2

2T2

1/2

,
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where T1 = 48([Y, Y ]1/(2N1))
2, T2 = 52([Y, Y ]1/(2N1))

2/35, T3 = 24([Y, Y ]1/(2N1))
2/5

and T4 = 48[Y, Y ]
sub
1 ([Y, Y ]1/(2N1))/5.

The realized Kernel estimator is defined as

⟨X, X⟩
Ker
1 = [Y, Y ]1 +

H
h=1

fk((h − 1)/H)


N1

i=1


1Yti 1Yti−h + 1Yti 1Yti+h


,

where H = cker N 1/2
1 and fk is a Kernel function. We choose the Parzen Kernel:

fk(x) =


1 − 6x2

+ 6x3 for 0 ≤ x ≤ 1/2;

2(1 − x)3 for 1/2 ≤ x ≤ 1.

Under constant volatility, the optimal choice for cker in practice is given by

cker =


[Y, Y ]1/(2N1)

[Y, Y ]
sub
1

1/2 
1

f 0,0
k


− f 0,2

k +


( f 0,2

k )2

+ 3 f 0,0
k ( f ′′′

k (0) + f 0,4
k )

1/2
1/2

,

where f 0,0
k =

 1
0 fk(x)2dx, f 0,2

k =
 1

0 fk(x) f ′′

k (x)dx and f 0,4
k =

 1
0 fk(x) f ′′′

k (x)dx .
The pre-averaging estimator is as follows:

⟨X, X⟩
Pre
1 =

1

θϕ2
√

N1

N1−kn+1
i=0

(1Yi )
2
−

ϕ1

2θ2ϕ2 N1
[Y, Y ]1,

where ϕ1 = 1, ϕ2 = 1/12 and

1Yi =
1
kn


kn−1

j=kn/2

Yi+ j −

kn/2−1
j=0

Yi+ j



with kn =
√

N1θ . The optimal choice of θ when the volatility is constant is

θ = 4.777([Y, Y ]1/(2N1))
1/2/([Y, Y ]

sub
1 )1/2.

Remark 3. The grid allocation schemes in constructing the above estimators are optimal in
the sense of achieving efficient asymptotic variance bound when (σt ) is constant. However, in
practice there is no optimal choice since, for instance, (σt ) is random and time dependent. See
Remarks 2 and 3 in [15] for related discussions on this. In our case, due to the more complex
model assumptions, i.e. data with time endogeneity and noise, and grid allocation scheme, i.e.
bivariate setting (p, q) in contrast to the existing univariate cases, we do not provide a theoretical
optimal choice but rather give below some practical guidelines.

Back to our estimator ⟨X, X⟩1, there are several tuning parameters (n, ℓ, p, q and d1) that
one has to determine. Regarding n which characterizes the sampling frequency, one can use the
average number of transactions per day for the past, say 30, days as an approximation. About
(ℓ, p, q), notice that Theorem 2 suggests ℓ ∼ Cℓnα (hence q ∼ n/ℓ) and p ∼ C pn3α−1. On the
one hand, one should choose ℓ as large as possible in order to have higher convergence rate. On
the other hand, large ℓ induces small q and hence small p (recall q > p) and the main role that
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p plays is to reduce the microstructure noise. Hence, one should also be aware of the magnitude
of the microstructure noise when choosing appropriate p, and p cannot be too small when prices
are heavily contaminated. Under the simulation setting below, the sampling frequency is around
n = 46,800, and the standard deviation of the noise isσε = 0.0005. We choose p = 5 which is
found to be good enough to reduce the microstructure noise effect. In practice, one can use (7)
to estimate the standard deviation of the noise and come up with a reasonable choice of p. The
block size q should be larger than p and is chosen as 20 (and ℓ ≈ 2340). As to d1, this depends
on, for example, how volatile the volatility process is, which one can get some rough idea by
looking at a suitable estimate of the spot volatilities. If the volatility process is more volatile, one
should divide the whole time interval into shorter time periods, i.e., choose a smaller d1. In our
simulation, we choose d1 = 100, i.e. dividing the complete grid into around 20 blocks.

We next present our three simulation designs and the corresponding results.

4.2. Design I: Brownian bridge with hitting times

We first consider the case when the latent price process X follows a Brownian bridge with
(constant) volatility σ that starts at X0 and ends at X0 + 4σ . X can be expressed as (see p. 358
of Karatzas and Shreve [18])

d X t =
X0 + 4σ − X t

1 − t
dt + σ dWt ,

where Wt is a standard Brownian motion. In this study, we set σ = 0.02. The sampling times
are generated as follows: let a = 5σ, b = σ/10, n = 46,800, ℓ′

≈ 16 800 (roughly n19/21), and
q ′

= [n/ℓ′
]. Then

(1) for j = 0, 1, 2, . . . , q ′, t j =
j

2n ;
(2) for i = 1, 2, . . . ,

sparse sampling: tiq ′+1 = inf{t > tiq ′ : X t − X tiq′ = either a/
√

ℓ′ or − b/
√

ℓ′};

intensive sampling: tiq ′+ j = tiq ′+1 +
j−1
2n , for j = 2, . . . , q ′.

The mean observation duration when sampling sparsely is about 1/(2ℓ′), roughly 3 times of the
observation duration when sampling intensively. If as n → ∞, ℓ′ grows in the rate of n19/21, then
actually the limit in C(7) vanishes, however, as one can see from the simulation results below,
(finite sample) bias correction as discussed in Section 3.3 can substantially reduce the (finite
sample) bias.

Fig. 2displays the histogram and normal Q–Q plot for the estimator ⟨X, X⟩1 based on the 1000
simulated samples. The plots show that the finite sample behavior of our CLT works well. In
Table 1 we compare the performances of the four estimators that we discussed in Section 4.1, the
“Uncorrected” estimator F (2)

n (1) defined in (10), and our final estimator ⟨X, X⟩1. From the table
one can see that our estimator provides the smallest RMSE and has substantially smaller bias than
the others (reduced by more than 80%) while maintains similar efficiency (standard deviation).

4.3. Design II: Heston bridge with hitting times

In order to further investigate the performance of our estimator under more complex situations,
in this subsection, we consider the following stochastic volatility modeld X t =

X0 + 4ϑ1/2
− X t

1 − t
dt +


Vt dWt

dVt = κ(ϑ − Vt ) dt + γ


Vt dW σ
t ,
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Fig. 2. Histogram and QQ plot of the estimator ⟨X, X⟩1 for Design I. The red vertical line in the histogram indicates the
true value of target. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Performance of the six estimators in the presence of endogenous time for Design I, the constant volatility case. Our
estimator ⟨X, X⟩1 provides the smallest RMSE. The RMSE is reduced by more than 50%; the bias is reduced by
more than 80% while the standard deviation is kept at the same level as others.

TSRV MSRV Kernel Pre-averaging Uncorrected ⟨X, X⟩1

RMSE 3.734e−05 3.553e−05 3.810e−05 3.340e−05 3.300e−05 1.621e−05
Sample bias 3.300e−05 3.163e−05 3.454e−05 2.927e−05 2.911e−05 −4.997e−06
Sample s.d. 1.748e−05 1.619e−05 1.609e−05 1.609e−05 1.555e−05 1.543e−05

Table 2
Performance of the six estimators in the presence of endogenous time for Design II, the stochastic volatility case.
Our estimator again provides the smallest RMSE. The RMSE is reduced by more than 50%; the bias is reduced by
more than 80%.

TSRV MSRV Kernel Pre-averaging Uncorrected ⟨X, X⟩1

RMSE 3.824e−05 3.579e−05 3.835e−05 3.387e−05 3.375e−05 1.636e−05
Sample bias 3.393e−05 3.175e−05 3.463e−05 2.965e−05 2.974e−05 −4.215e−06

where Wt and W σ
t are standard Brownian motions with instantaneous correlation coefficient ρ,

and κ, ϑ and γ are positive constants. We consider the situation when X starts at X0 and ends at
X0+4ϑ1/2. In the simulation, we set ϑ = 0.0004, γ = 0.5/252, κ = 5/252 and ρ = −0.5. Here,
we choose a moderate value −0.5 for ρ to represent the leverage effect. The leverage effect can
be bigger for indices as studied by Aı̈t-Sahalia and Kimmel [2] and Aı̈t-Sahalia et al. [1]. Times
are generated according to the same hitting rule as in Design I. We can see from Table 2 that in
this more complex situation, our estimator again has substantially smaller bias and RMSE than
the others. We did not include the sample standard deviation here since the integrated volatility
to be estimated in this case depends on the sample path and is random.

4.4. Design III: Brownian bridge with independent Poisson times

The goal of this design is to check the performance of our estimator when the sampling times
are not endogenous. We again assume the Brownian bridge dynamic for X as in Design I. The
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Table 3
Performance of the six estimators when the observation times are not endogenous. The performance of our estimator is
comparable to others.

TSRV MSRV Kernel Pre-averaging Uncorrected ⟨X, X⟩1

RMSE 1.486e−05 1.375e−05 1.434e−05 1.373e−05 1.312e−05 1.568e−05
Sample bias 2.643e−06 1.584e−06 4.144e−06 −2.847e−07 −1.274e−06 −7.723e−06
Sample s.d. 1.463e−05 1.367e−05 1.374e−05 1.373e−05 1.307e−05 1.365e−05

observation times are now generated from an independent Poisson process with rate 46,800.
Table 3 reports the result of performance comparison, and we can see that our estimator performs
similarly as the other estimators in this case.

In summary, one observes from Tables 1–3 that when sampling times are endogenous
(Designs I and II), one can have substantial reductions in RMSE and bias by using our estimator.
When there is no endogeneity (Design III), our estimator performs comparably to others.

5. Concluding remarks

In this paper, we establish a theoretical framework for dealing with effects of both the
endogenous time and microstructure noise in volatility inference. An estimator that can
accommodate both issues is proposed. Numerical studies are performed. The results show that
our proposed estimator can substantially outperform existing popular estimators when time
endogeneity exists, while has a comparable performance to others when there is no endogeneity.
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Appendix A. Proofs

Throughout the proofs, C, c, C1, etc. denote generic constants whose values may change from
line to line. Moreover, since we shall establish stable convergence, by a change of measure
argument (see e.g. Proposition 1 of Mykland and Zhang [25]) we can suppress the drift and
assume that

1. µt ≡ 0.
Moreover, because of the local boundedness condition on σ 2

t , by standard localization
arguments we can assume without loss of generality that

2. 0 < c ≤ σt ≤ σ+, where c and σ+ are nonrandom numbers,
see e.g. [24,25]. Similarly, we can without loss of generality strengthen the assumption on ∆n
and N1 in C(2)–C(4) as follows:

3. ∆n ≤ C/n1−η, and
4. n/C ≤ N1 ≤ Cn.
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A.1. Prerequisites

In the proofs, we shall repeatedly use the following inequalities.
Burkholder–Davis–Gundy (BDG) inequality with random times:
First, if ti ’s are stopping times and f (s) is adapted with max0≤s≤1 | f (s)| ≤ f+, then by the
Burkholder–Davis–Gundy inequality with random times (see, e.g., p. 161 of Revuz and Yor [29]),
for any exponent β ≥ 1,

E

 ti

ti−1

f (s)dWs

β

≤ C E

 ti

ti−1

f (s)2ds

β/2

≤ C f β
+ E(ti − ti−1)

β/2.

Doob’s L p inequality:
Second, for any process Z , which is either a continuous time martingale or a positive
submartingale, Doob’s L p inequality (see p. 54 of Revuz and Yor [29]) states that, for any β ≥ 1
and any λ > 0,

P


sup

s∈[0,1]

|Zs | ≥ λ


1
λβ

E |Z1|
β ,

and for β > 1,E


sup

s∈[0,1]

|Zs |

β
1/β

≤
β

β − 1


E |Z1|

β
1/β

.

Therefore, if we can establish a bound order for E |Z1|
β (β = 1 or 2 in our case), then the same

bound order applies in D[0, 1].
We will also use the following results about the convergence of σ 2

ε to σ 2
ε .

Lemma 1. For σ 2
ε defined in (7), one has

√
N1

σ 2
ε − σ 2

ε


= Op(1).

Proof. First, notice that
N1

σ 2
ε − σ 2

ε


= [X, X ]1/2


N1 + [X, ε]1/


N1 + ([ε, ε]1 − 2N1σ

2
ε )/2


N1.

By C(2) and the fact that [X, X ]1 = Op(1),

[X, X ]1/2


N1 = Op


1

√
n


.

As to [X, ε]1/
√

N1, we treat it as follows,

[X, ε]1/


N1 =
1

√
N1


ti ≤1

1X ti εti −
1

√
N1


ti ≤1

1X ti εti−1 .

We have

E

 1
√

N1


ti ≤1

1X ti εti

2
F1

 =
σ 2

ε

N1
[X, X ]1 = Op


1
n





2710 Y. Li et al. / Stochastic Processes and their Applications 123 (2013) 2696–2727

by again C(2) and [X, X ]1 = Op(1). The same argument applies to the other term. Hence,
[X, ε]1/

√
N1 = Op


1/

√
n

. For the last term ([ε, ε]1 − 2N1σ

2
ε )/2

√
N1, we rewrite it as

([ε, ε]1 − 2N1σ
2
ε )

2
√

N1
=

1
√

N1


ti ≤1

(ε2
ti − σ 2

ε ) −
1

√
N1


ti ≤1

εti−1εti −

ε2
t0 + ε2

tN1
− 2σ 2

ε

2
√

N1
.

Similarly as above, we have

E

 1
√

N1


ti ≤1

(ε2
ti − σ 2

ε )

2
F1

 =


1 +

1
N1


Var(ε2) = Op(1),

and 1/
√

N1


ti ≤1 εti−1εti = Op(1) and (ε2
t0 + ε2

tN1
− 2σ 2

ε )/(2
√

N1) = Op(1/
√

n), completing
the proof. �

Next, as we will deal with sums of a random number of random variables repeatedly, the
following simple lemma turns out to be very useful.

Lemma 2. Suppose that N is a random variable taking values in nonnegative integers, and
X1, X2, . . . are nonnegative random variables satisfying

E(X i I{i≤N }) ≤ C · P(i ≤ N ), for all i.

Then

E
N

i=1

X i ≤ C · E(N ).

Proof. The conclusion follows from the fact that
N

i=1 X i =


∞

i=1 X i I{i≤N } and the Monotone
Convergence theorem. �

A.2. Proof of Theorem 1: single sub-grid case

The basic idea is to decompose

⟨X, X⟩
L A
t − ⟨X, X⟩t = [Y , Y ]

S
t −

2L t

p
σ 2

ε − ⟨X, X⟩t

into existing familiar quantities and other negligible terms. The proof is divided into three steps.

Step 1: Introducing Y
The local average can be decomposed as follows

Y ti,0 =
1
p

p−1
j=0

(X tiq+p− j + εtiq+p− j )

= X ti,0 −
1
p

p−1
j=0

(X tiq+p − X tiq+p− j ) +
1
p

p−1
j=0

εtiq+p− j

= X ti,0 −

p
j=2

j − 1
p

1X tiq+ j + ε̄ti,0
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where

ε̄ti,0 :=
1
p

p−1
j=0

εtiq+p− j ,

which is a sequence of independent random variables with common mean E ε̄ = 0, variance
E ε̄2

= σ 2
ε /p, E ε̄3

= Eε3/p2 and E ε̄4
= Eε4/p3

+ 3(p − 1)(σ 2
ε )2/p3. Motivated by the above

decomposition, we introduce the new process Y as followsYti,0 = X ti,0 + ε̄ti,0 , for i = 0, . . . , L1.

The strategy is that if the difference ([Y ,Y ]
S
t − [Y , Y ]

S
t ), where similarly to the definition of

[Y , Y ]
S
t

[Y ,Y ]
S
t :=


ti,0≤t

(1Yti,0)
2 and 1Yti,0 = Yti,0 − Yti−1,0 ,

is of a negligible order, then one needs only to deal with [Y ,Y ]
S
t .

Step 2: Determining the order of ([Y ,Y ]
S
t − [Y , Y ]

S
t )

For notational convenience, we define for k = 0, 1, . . . , q − 1,
Ak

i := X tk
i,0

,

Bk
i := ε̄tk

i,0
, and

Ck
i := −

p
j=2

j − 1
p

1X tiq+ j+k ,

(A.1)

and let

Ai = A0
i , Bi = B0

i , and Ci = C0
i .

Adopting the above notation, we can write

[Y , Y ]
S
t − [Y ,Y ]

S
t =


ti,0≤t

(1Ai + 1Bi + 1Ci )
2
−


ti,0≤t

(1Ai + 1Bi )
2

=


ti,0≤t

1C2
i  

I

+ 2


ti,0≤t
1Ai1Ci  
II

+ 2


ti,0≤t
1Bi1Ci  
III

. (A.2)

By the Cauchy–Schwarz inequality, for any t ,

I ≤ 4


ti,0≤1

C2
i ≤ 4


tiq≤1

C2
i .

By the BDG inequality and the strong Markov property of X ,

E[C2
i I{tiq≤1}] = E


I{tiq≤1}E


C2

i |Ftiq


≤ C E


I{tiq≤1}E


p−1
j=1

j2

p2

 tiq+ j+1

tiq+ j

σ 2
s ds

Ftiq


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≤ C E


I{tiq<1}E


p−1
j=1

j2

p2 σ 2
+∆n

Ftiq


≤ C

p

n1−η
P(tiq ≤ 1).

By Lemma 2 and the fact that N1 ≤ Cn and hence L1 ≤ Cn/q we then obtain

E(I) ≤ 4E


ti,0≤1

C2
i

 ≤ 4E


tiq≤1

C2
i

 ≤ Cp/(qn−η). (A.3)

Next we study term III. In fact,

E(III)2
= 4E

E


ti,0≤t

1Bi1Ci

2
F1

 ≤ C
σ 2

ε

p
E


ti,0≤t

C2
i


. (A.4)

Hence, it follows from (A.3) that III = Op

(1/(qn−η))1/2


.

Finally we deal with term II.

Claim 1. II = 2


ti,0≤t 1Ai1Ci = Op


ℓp

n1−η


+ Op


p

n1−2η


.

Proof of Claim 1. First notice that
ti,0≤t

1Ai1Ci =


ti,0≤t

Ci1Ai −


ti,0≤t

Ci−11Ai ,

where, by the BDG inequality and (A.3), we have that

E


ti,0≤t

Ci−11Ai

2

≤ C E


ti,0≤t
C2

i−1
q

n1−η
σ 2

+ ≤ Cℓ
pq

n2−2η
≤ C

p

n1−2η
, (A.5)

and hence


ti,0≤t Ci−11Ai = Op


p

n1−2η


. Next define 1X (i)

:= X tiq+1 − X t(i−1)q+p . Then


ti,0≤t

Ci1Ai = −


ti,0≤t

p
j=2

j − 1
p


1X tiq+ j

2
  

ς1

−


ti,0≤t

p
j=2


j − 1

p
1X (i)

+
1
p

j−1
m=2

( j + m − 2)1X tiq+m


1X tiq+ j  

ς2

. (A.6)

By the BDG inequality, Eς1 ≤ Cℓp/n1−η; moreover, by the BDG inequality again,

E


j − 1

p
1X (i)

+
1
p

j−1
m=2

( j + m − 2)1X tiq+m

2

≤ Cq/n1−η
;

hence, applying once more the BDG inequality one obtains that

E (ς2)
2

≤ C
ℓpq

n2−2η
. (A.7)
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It follows that ς2 = Op

(p/n1−2η)1/2


and moreover,

II = Op


ℓp

n1−η


+ Op


p

n1−2η


. �

To summarize,

[Y , Y ]
S
t − [Y ,Y ]

S
t = Op


ℓp

n1−η


+ Op


p

n1−2η


. (A.8)

Remark 4. In the proof of Theorem 2, we will analyze [Y , Y ]
S
t −[Y ,Y ]

S
t in more detail. Notice

that I = 2


ti,0≤t C2
i − 2


ti,0≤t Ci−1Ci − C2

0 − C2
L t

, where the end effect terms C2
0 and C2

L t

are Op

(p/n1−η)1/2


and by the BDG inequality,


ti,0≤t Ci−1Ci is Op


pℓ1/2/n1−η


. Hence,

from (A.2) and the analysis of terms I, II and III,

[Y , Y ]
S
t − [Y ,Y ]

S
t = 2


ti,0≤t


p

j=2

j − 1
p

1X tiq+ j

2

− 2


ti,0≤t

p
j=2

j − 1
p

(1X tiq+ j )
2
+ Op


p

n1−2η


. (A.9)

Moreover,
p

j=2

j − 1
p

1X tiq+ j

2

=

p
j=2

( j − 1)2

p2 (1X tiq+ j )
2

+ 2


2≤k< j≤p

(k − 1)( j − 1)

p2 1X tiq+k 1X tiq+ j . (A.10)

Step 3: CLT for ⟨X, X⟩
L A
t

We first notice that

[Y ,Y ]
S
t =


ti,0≤t

(1X ti,0)
2
+ 2


ti,0≤t

(1X ti,0)(1ε̄ti,0) +


ti,0≤t

(1ε̄ti,0)
2

:= [X, X ]
S
t + 2[X, ε̄]S

t + [ε̄, ε̄]S
t . (A.11)

Hence, we have the following decomposition

⟨X, X⟩
L A
t − ⟨X, X⟩t = [Y , Y ]

S
t − [Y ,Y ]

S
t + [Y ,Y ]

S
t − ⟨X, X⟩t −

2L t

p
σ 2

ε

=


[Y , Y ]

S
t − [Y ,Y ]

S
t


+


[X, X ]

S
t − ⟨X, X⟩t


+


[ε̄, ε̄]S

t −
2L t

p
σ 2

ε


−

2L t

p

σ 2
ε − σ 2

ε


+ 2[X, ε̄]S

t . (A.12)
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Recall that ℓ ∼ Cℓnα and p ∼ C pnα . Then by (A.8), [Y , Y ]
S
t − [Y ,Y ]

S
t is op(1/

√
ℓ). As to the

term 2L t/p(σ 2
ε − σ 2

ε ) in (A.12), by Lemma 1 together with C(2) and C(4), we have that

2L t

p

σ 2
ε − σ 2

ε


=

2L t

p
√

N1


N1

σ 2
ε − σ 2

ε


= Op


ℓ

p
√

n


= op


1

√
ℓ


in D[0, 1].

Therefore, in order to prove the asymptotic property of
√

ℓ


⟨X, X⟩
L A
t − ⟨X, X⟩t


, one only

needs to prove the FCLT for the following quantity

√
ℓ

[X, X ]

S
t − ⟨X, X⟩t


+

√
ℓ


[ε̄, ε̄]S

t −
2L t

p
σ 2

ε


+ 2

√
ℓ[X, ε̄]S

t . (A.13)

First, notice that

[ε̄, ε̄]S
t −

2L t

p
σ 2

ε = 2
L t

i=1


ε̄2

ti,0 −
σ 2

ε

p


− ε̄2

t0,0
− ε̄2

tLt ,0
− 2

L t
i=1

ε̄ti−1,0 ε̄ti,0 .

Note that ε̄2
t0,0

= Op(1/p); hence
√

ℓε̄2
t0,0

= op(1), and so is
√

ℓε̄2
tLt ,0

. Moreover,

[X, ε̄]S
t =

L t
i=1

(1X ti,0 − 1X ti+1,0)ε̄ti,0 + 1X tLt +1,0 ε̄tLt ,0
− 1X t1,0 ε̄t0,0 .

Note that 1X tLt +1,0 ε̄tLt ,0
= Op


(1/(pℓn−η))1/2


and so is 1X t1,0 ε̄t0,0 . We are hence led to study

the following martingales

Mt :=
√

ℓ

[X, X ]

S
t − ⟨X, X⟩t


,

M (1)
t :=

√
ℓ

L t
i=1


ε̄2

ti,0 −
σ 2

ε

p


,

M (2)
t :=

√
ℓ

L t
i=1

ε̄ti−1,0 ε̄ti,0 ,

M (3)
t :=

√
ℓ

L t
i=1

(1X ti,0 − 1X ti+1,0)ε̄ti,0 .

Then (A.13) can be rewritten as

Mt + 2M (1)
t − 2M (2)

t + 2M (3)
t + op(1). (A.14)

Simple calculation gives the corresponding predictable variation processes as follows

⟨M (1), M (1)
⟩t |F1 = ℓL t Var(ε̄2) = ℓL t


E ε̄4

− (E ε̄2)2


= ℓL t


Eε4

p3 +
2(σ 2

ε )2

p2 −
3(σ 2

ε )2

p3


p

→ 2


Cℓ

C p
σ 2

ε

2  t

0
rsds,

⟨M (2), M (2)
⟩t |F1 = ℓ

σ 2
ε

p

L t
i=1

ε̄2
ti−1,0

p
→


Cℓ

C p
σ 2

ε

2  t

0
rsds, and
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⟨M (3), M (3)
⟩t |F1 = 2ℓ

σ 2
ε

p
[X, X ]

S
t − 2ℓ

σ 2
ε

p

L t
i=1

(1X ti,0)(1X ti+1,0)

− ℓ
σ 2

ε

p


(1X t1,0)

2
+ (1X tLt +1,0)

2


p
→ 2

Cℓ

C p
⟨X, X⟩tσ

2
ε ,

where in the last convergence we used the fact that ℓ/p ·
L t

i=1(1X ti,0)(1X ti+1,0) → 0 in D[0, 1]

since it is a martingale with predictable variation

ℓ2

p2

L t
i=1

(1X ti,0)
2
 ti+1,0

ti,0
σ 2

s ds ≤ C
ℓ2q

p2n1−η

L t
i=1

(1X ti,0)
2

= Op


ℓ

p2n−2η


= op(1).

Furthermore, the predictable covariation processes of M (1), M (2) and M (3) are

⟨M (1), M (2)
⟩t |F1 = ℓE ε̄3

L t
i=1

ε̄ti−1,0 = ℓ
Eε3

p2

L t
i=1

ε̄ti−1,0 = Op

 √
ℓ

p3/2


= op(1),

⟨M (1), M (3)
⟩t |F1 = ℓ

L t
i=1

(1X ti,0 − 1X ti+1,0)E(ε̄3)

= ℓE(ε̄3)(1X t1,0 − 1X tLt +1,0)

= Op(


ℓ/(p4n−η)) = op(1), and

⟨M (2), M (3)
⟩t |F1 = ℓE ε̄2

L t
i=1

(1X ti,0 − 1X ti+1,0)ε̄ti−1,0 = Op


ℓ

p3/2


= op(1),

where the last order follows from the fact that
L t

i=1(1X ti,0 − 1X ti+1,0)ε̄ti−1,0 = Op(1/p1/2)

by considering its predictable variation process similarly to the way that we treat M (3)
t . The

Lindeberg type condition can be easily verified by using the same calculations as above and the
assumption that (εti )i≥1 is an independent sequence with finite forth moment. Therefore, the
usual martingale central limit theorem givesM (1)

t

M (2)
t

M (3)
t


F1 H⇒ Σ 1/2

W1(t)
W2(t)
W3(t)

 , (A.15)

where W1, W2 and W3 are independent standard Brownian motions and the limiting covariance
matrix process is given by

Σ =


2


Cℓ

C p
σ 2

ε

2  t

0
rsds 0 0

0


Cℓ

C p
σ 2

ε

2  t

0
rsds 0

0 0 2
Cℓ

C p
⟨X, X⟩tσ

2
ε


.
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Finally, by Theorem 1 in [20], we have the following convergence for Mt

Mt H⇒
2
3

 t

0
vsσsd Xs +

 t

0


2
3

us −
4v2

s

9


σ 4

s dW (s), (A.16)

where W (s) is a standard Brownian motion. Furthermore, it is easy to see that ⟨M, M (i)
⟩t = 0

for i = 1, 2, 3; hence W (t) is independent of Wi (t), i = 1, 2, 3. Combining this fact with (A.15)
and (A.16) yields the desired convergence. �

A.3. Proof of Theorem 2: multiple sub-grids case

We shall establish the following stable in law convergence

√
ℓ


1
q

q−1
k=0

[Y , Y ]
Sk
t −

2Nt

pq
σ 2

ε − (1 + A(p, q))⟨X, X⟩t



H⇒
2
3

 t

0
v̄sσsd Xs +

 t

0


4ws −

4
9
v̄2

s


σ 4

s +
8C3

ℓ

C p
rs(σ

2
ε )2

1/2

d Bs .

Similar to the convention of using notation [Y , Y ]
Sk
t to denote RV of local averaged Y process

computed based on the kth sub-grid Sk , all subsequent notations in the proof with superscript k
or Sk indicate that the same operation as performed on the sub-grid S ≡ S0 is applied to the kth
sub-grid.

The proof for Theorem 2 also proceeds in three steps. Similar to the proof of Theorem 1, the
proof for Theorem 2 is based on the following decomposition

√
ℓ


1
q

q−1
k=0

[Y , Y ]
Sk
t −

2Nt

pq
σ 2

ε − (1 + A(p, q))⟨X, X⟩t



=
√

ℓ


1
q

q−1
k=0

[Y , Y ]
Sk
t −

1
q

q−1
k=0

[Y ,Y ]
Sk
t − A(p, q)⟨X, X⟩t


  

I

+
√

ℓ


2
q

q−1
k=0

[X, ε̄]
Sk
t +

1
q

q−1
k=0

[ε̄, ε̄]
Sk
t −

2Nt

pq
σ 2

ε


  

II

+
√

ℓ


1
q

q−1
k=0

[X, X ]
Sk
t − ⟨X, X⟩t


  

III

.

Assuming ℓ ∼ Cℓnα and p ∼ C pn3α−1 with assumptions made in the theorem on α and η, we
shall show in Step 1 that I = op(1); in Step 2 that II satisfies a martingale CLT; in Step 3 a CLT
with asymptotic bias decomposition for term III; and, finally, sum up in Step 4.
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Step 1

To show I = op(1), we consider the difference

√
ℓ

q

q−1
k=0

[Y , Y ]
Sk
t −

√
ℓ

q

q−1
k=0

[Y ,Y ]
Sk
t

=

√
ℓ

q

q−1
k=0


tk
i,0≤t

(1Ck
i )2

+ 2


tk
i,0≤t

1Ak
i 1Ck

i + 2


tk
i,0≤t

1Bk
i 1Ck

i

 , (A.17)

adopting the previous notational convention for the single sub-grid case, where Ak
i , Bk

i and Ck
i

are defined in (A.1). Roughly speaking, recall (A.9) and (A.10) of Remark 4 from the end of Step
2 in the proof for Theorem 1, we expect the difference (A.17) to be

2
√

ℓ

q

p−1
j=1


j2

p2 −
j

p


·


ti ≤t

(1X ti )
2
+ op(1) =

√
ℓA(p, q)[X, X ]t + op(1). (A.18)

It is easy to see that
√

ℓA(p, q)([X, X ]t − ⟨X, X⟩t ) = op(1). Hence I = op(1) if we can show
that (A.18) holds.

We now verify (A.18). It is easy to see that the RHS of (A.17) equals

2
√

ℓ

q

q−1
k=0


tk
i,0≤t

(Ck
i )2

  
I.i

+
2
√

ℓ

q

q−1
k=0


tk
i,0≤t

Ck
i−1Ck

i

  
I.ii

+
2
√

ℓ

q

q−1
k=0


tk
i,0≤t

1Bk
i 1Ck

i

  
I.iii

;

−
2
√

ℓ

q

q−1
k=0


tk
i,0≤t

Ck
i−11Ak

i

  
I.iv

+
2
√

ℓ

q

q−1
k=0


tk
i,0≤t

Ck
i 1Ak

i

  
I.v

+op(1).

We analyze them one by one.

We start with I.i =
2
√

ℓ
q

q−1
k=0


tk
i,0≤t (C

k
i )2. Notice that on each sub-grid Sk ,

(Ck
i )2

=

p−1
j=1

j2

p2 (1X tiq+ j+k+1)
2
+ 2

p−1
j=2


j−1

m=1

m

p
1X tiq+m+k+1


j

p
1X tiq+ j+k+1 .

Therefore, term I.i can be rewritten as follows

2
√

ℓ

q


p−1
j=1

j2

p2


ti ≤t

(1X ti )
2

  
dominating term A

−
2
√

ℓ

q


p−1
i=1


p−1
j=i

j2

p2


(1X ti )

2

+

L t q+p−1
i=L t q+2


i−L t q−1

j=1

j2

p2


(1X ti+1)

2


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+


4
√

ℓ

q

p−2
i=2


i

j=2

j

p

j−1
m=1

m

p
1X ti− j+m+1


1X ti+1

+
4
√

ℓ

q

L t q+2
i=p−1


p−1
j=2

j

p

j−1
m=1

m

p
1X ti− j+m+1


1X ti+1

+
4
√

ℓ

q

L t q+p−1
i=L t q+3


p−1

j=i−L t q

j

p

j−1
m=1

m

p
1X ti− j+m+1


1X ti+1



:= dominating term A − edge term B + S(1)
t . (A.19)

It is easy to see that the edge term B = op(1). We shall further show that S(1)
t is negligible. To

see that, notice that its expected predictable variation satisfies

E⟨S(1), S(1)
⟩1 ≤

Cℓσ 2
+

q2n1−η
E


i


p−1
j=2

j

p

j−1
m=1

m

p
1X ti− j+m+1

2

=
Cℓσ 2

+

q2n1−η
E


i


p−2
m=1


p−1

j=m+1

j

p

j − m

p


1X ti−m+1

2

≤
Cℓp3

n1−2ηq2 ,

which follows from the fact that

E


p−2
m=1


p−1

j=m+1

j

p

j − m

p


1X ti−m+1

2

≤ C
p3

n1−η
, uniformly in i.

Therefore,

S(1)
t = Op

 ℓp3

n1−2ηq2

 = Op

 p3

q3n−2η

 = op(1) in D[0, 1].

Next we estimate I.ii =
2
√

ℓ
q

q−1
k=0


tk
i,0≤t Ck

i−1Ck
i . It can be rearranged as

I.ii =
2
√

ℓ

q

q+p−2
i=q+1


i−q
j=1

j

p

p−1
m=1

m

p
1X ti−q− j+m+1


1X ti+1

+
2
√

ℓ

q

L t q+1
i=q+p−1


p−1
j=1

j

p

p−1
m=1

m

p
1X ti−q− j+m+1


1X ti+1

+
2
√

ℓ

q

L t q+p−1
i=L t q+2


p−1

j=i−L t q

j

p

p−1
m=1

m

p
1X ti−q− j+m+1


1X ti+1 .
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We denote the above quantity as S(2)
t . Similar to the treatment for I.i,

E⟨S(2), S(2)
⟩1 ≤

Cℓσ 2
+

q2n1−η
E


i


p−1
j=1

j

p

p−1
m=1

m

p
1X ti−q− j+m+1

2

≤
C

q2

ℓp3

n1−2η
.

Therefore,

S(2)
t = Op

 ℓp3

n1−2ηq2

 = Op

 p3

q3n−2η

 = op(1) in D[0, 1].

Now we study I.iii =
2
√

ℓ
q

q−1
k=0


tk
i,0≤t 1Bk

i 1Ck
i . Noticing that the estimate in (A.4) holds

uniformly for sub-grids Sk , hence by the Cauchy–Schwarz inequality we obtain that

I.iii = Op


ℓ/(qn−η)

1/2


= op(1) in D[0, 1].

Now we come to I.iv =
2
√

ℓ
q

q−1
k=0


tk
i,0≤t Ck

i−11Ak
i . By the Cauchy–Schwarz inequality

again, as the estimate in (A.5) holds uniformly for sub-grids Sk , we have

I.iv = Op


ℓp/n1−2η

1/2


= op(1) in D[0, 1].

Finally we deal with I.v =
2
√

ℓ
q

q−1
k=0


tk
i,0≤t Ck

i 1Ak
i . Similar to the decomposition (A.6) we

have

I.v = −
2
√

ℓ

q

q−1
k=0

(ςk
1 + ςk

2 )

where, with 1X (k,i)
:= X tiq+k+1 − X ti−1q+k+p ,

ςk
1 =


tk
i,0≤t

p
j=2

j − 1
p


1X tiq+k+ j

2
,

ςk
2 =


tk
i,0≤t

p
j=2


j − 1

p
1X (k,i)

+
1
p

j−1
m=2

( j + m − 2)1X tiq+k+m


1X tiq+k+ j .

It is easy to see that

−2
√

ℓ/q
q−1
k=0

ςk
1 = −2

√
ℓ/q

p−1
j=1

j

p


ti ≤t

(1X ti )
2

  
dominating term B

+op(1).

We next prove that 2
√

ℓ/q
q−1

k=0 ςk
2 is negligible. In fact, the estimate in (A.7) holds uniformly

for all the sub-grids, hence by the Cauchy–Schwarz inequality again we get that

2
√

ℓ/q
q−1
k=0

ςk
2 = Op


ℓp/n1−2η

1/2


= op(1) in D[0, 1].
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Summing up the computations for I.i–I.v, we see that the two dominating terms appearing in
I.i and I.v together give the first term in (A.18) and the rest gives the op(1) term in (A.18).

Step 2

Now we deal with the term II, starting with 2
√

ℓ/q
q−1

k=0 [X, ε̄]
Sk
t . Denote

∆q X ti = X ti − X ti−q .

Combining terms with common factor εti and ordering them chronologically (according to the
sequence (εti )i≥1) we get

2
√

ℓ

q

q−1
k=0

[X, ε̄]
Sk
t =

2
√

ℓ

q

q−1
k=0

Lk
t −1

i=1


1X tk

i,0
− 1X tk

i+1,0


ε̄tk

i,0

+ 1X tk
Lk

t ,0
ε̄tk

Lk
t ,0

− 1X tk
1,0

ε̄tk
0,0


=

2
√

ℓ

qp

(L t −1)q+1
i=q+p


p−1
j=0


∆q X ti+ j − ∆q X ti+q+ j


εti + remainder,

where the remainder term is a sum similar as above over the i’s smaller than q+p, and can be eas-
ily shown to be op(1). We shall further show that the first summand is also negligible, as follows

Var


2
√

ℓ

qp

(L t −1)q+1
i=q+p


p−1
j=0


∆q X ti+ j − ∆q X ti+q+ j


εti

F1



=
4ℓσ 2

ε

q2 p2


i


p−1
j=0


∆q X ti+ j − ∆q X ti+q+ j

2

=
4ℓσ 2

ε

q2 p2


i

p−1
j=0


(∆q X ti+ j )

2
+ (∆q X ti+q+ j )

2


−
8ℓσ 2

ε

q2 p2


i

p−1
j=0

∆q X ti+ j ∆q X ti+q+ j

+
8ℓσ 2

ε

q2 p2


i


0≤ j<k≤p−1


∆q X ti+ j − ∆q X ti+q+ j

 
∆q X ti+ j − ∆q X ti+q+k


(A.20)

:= V1 + V2 + V3. (A.21)

We have, first, by applying Lemma 2 and using the fact that E(∆q X ti )
2

≤ Cq/n1−η for all i ,

EV1 ≤
Cℓ

q2 p2 · n · p
q

n1−η
=

Cℓ

qpn−η
→ 0.

This, together with the Cauchy–Schwarz inequality, imply that E |V2| ≤ Cℓ/(pqn−η) → 0.
Finally, using the Cauchy–Schwarz inequality again we have

E |V3| ≤ CpE(V1) ≤ Cℓ/(qn−η) → 0.
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Second, for
√

ℓ/q
q−1

k=0 [ε̄, ε̄]
Sk
t , following the way the terms of 2

√
ℓ/q

q−1
k=0 [X, ε̄]

Sk
t were

rearranged, we have

√
ℓ

q

q−1
k=0

[ε̄, ε̄]
Sk
t =

√
ℓ

pq


ti ≤t


−2

p−1
j=0

p − j

p
εti−q− j − 2

p−1
j=1

p − j

p
εti−q+ j

+ 4
p−1
j=1

p − j

p
εti− j


εti +

2
√

ℓ

pq


ti ≤t

ε2
ti + op(1)

:= M (4)
t +

2
√

ℓ

pq


ti ≤t

ε2
ti + op(1)

where the op(1) term is again due to the end effect.

We first deal with M (4)
t . We need the following notation

J1 := {1, 2, . . . , p − 1}, J2 := {q − p + 1, q − p + 2, . . . , q − 1} and

J3 := {q, q + 1, . . . , q + p − 1}.

Let J :=
3

m=1 Jm and Jmax be the largest element in J . Moreover, denote the following weight
function

w( j) =


4

p − j

p
for j ∈ J1;

−2
p − q + j

p
for j ∈ J2; and

−2
p + q − j

p
for j ∈ J3.

Notice that |w( j)| ≤ 4 for all j ∈ J . M (4)
t is a martingale with quadratic variation that can then

be represented as

⟨M (4), M (4)
⟩t =

ℓσ 2
ε

p2q2


ti ≤t


−2

p−1
j=0

p − j

p
εti−q− j − 2

p−1
j=1

p − j

p
εti−q+ j

+ 4
p−1
j=1

p − j

p
εti− j

2

=
24ℓσ 2

ε

p4q2


ti ≤t

p−1
j=1

(p − j)2 σ 2
ε +

ℓσ 2
ε

p2q2


ti ≤t


j∈J

w( j)2(ε2
ti− j

− σ 2
ε )

+
ℓσ 2

ε

p2q2


ti ≤t


j,k∈J, j≠k

w( j)w(k)εti− j εti−k

=
24ℓσ 2

ε

p4q2


ti ≤t

p−1
j=1

(p − j)2 σ 2
ε + op(1)

∼
8nℓ(σ 2

ε )2

pq2

Nt

n
+ op(1)

p
→

8(σ 2
ε )2C3

ℓ

C p

 t

0
rsds
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where the last line follows from the assumption that L t/ℓ
p

→
 t

0 rsds and the third equality is
explained as follows. We take the third term on the RHS of the second equality for example
while the second term can be treated more easily by a similar argument. Notice that this term can
be rewritten as

Et :=
2ℓσ 2

ε

p2q2


ti <t∗


Jmax−1

j=1


Jmax− j

k=1

w(k)w( j + k)I{k∈J, j+k∈J }


εti− j


εti ,

where t∗ := max{t j ≤ t}. Hence by Lemma 2, the BDG inequality, the boundedness of w(·)

function and the fact that the cardinality of set J is of order p, we have

E


E 2
t


≤

4ℓ2σ 6
ε

p4q4 E

ti <t∗


Jmax−1

j=1


Jmax− j

k=1

w(k)w( j + k)I{k∈J, j+k∈J }


εti− j

2

≤ C
nqp2ℓ2σ 8

ε

p4q4 = C
nℓ2

p2q3 = o(1).

Hence Et = op(1).
Therefore, based on our moment assumption for (εti )i≥1, M (4) satisfies a CLT where the

limiting distribution is a mixture of normal and the mixture component is the variance equal

to
8(σ 2

ε )2C3
ℓ

C p

 t
0 rsds; in other words,

M (4)
t H⇒

 t

0


8(σ 2

ε )2C3
ℓ

C p
rs

1/2

d Bs, (A.22)

where Bt is a standard Brownian motion that is independent of F1.
As to 2

√
ℓ/(pq)


i ε2

ti , it follows from Lemma 1 and C(4) that

2
√

ℓ

pq


ti ≤t

ε2
ti −

2
√

ℓ

pq
Nt
σ 2

ε =
2
√

ℓ

pq


ti ≤t

(ε2
ti − σ 2

ε ) −
2
√

ℓ

pq
Nt

σ 2
ε − σ 2

ε


= Op

√
ℓn

pq


= op(1) in D[0, 1].

Step 3

Finally, we prove a CLT for term III. We have

M t :=
√

ℓ


1
q

q−1
k=0

[X, X ]
Sk
t − ⟨X, X⟩t



=
1
q

q−1
k=0

√
ℓ

[X, X ]

Sk
t − ⟨X, X⟩t


=

1
q

q−1
k=0

Mk
t ,

where

d Mk
t = 2

√
ℓ(X t − X tk

∗
)d X t
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and tk
∗ is the largest time smaller than or equal to t on the kth sub-grid. Therefore

M t =
1
q

q−1
k=0

 t

0
d Mk

s =
2
√

ℓ

q

q−1
k=0

 t

0
(Xs − X tk

∗
)d Xs = 2

√
ℓ

 t

0
fn(s)d Xs,

where

fn(s) =



0, for s ∈ [0, tp);

1
q

i−p
j=0

(Xs − X ti− j ), for s ∈ [ti , ti+1) and p ≤ i < q + p;

Xs − X ti +

q−1
j=1

q − j

q
1X ti− j+1 , for s ∈ [ti , ti+1) and i ≥ q + p.

M t is a martingale with quadratic variation ⟨M, M⟩t = 4ℓ
 t

0 fn(s)2σ 2
s ds. Since E fn(s)2

≤

Cq/n1−η,

4ℓ

 tq+p

0
fn(s)2σ 2

s ds = op(1). (A.23)

Hence, we need to only consider s ≥ tq+p, i.e., i ≥ q + p. By Itô’s formula,

d fn(s)4
= 4 fn(s)3d Xs + 6 fn(s)2σ 2

s ds, for s ∈ [ti , ti+1) and i ≥ q + p.

Hence

⟨M, M⟩t = 4ℓ

 t

0
fn(s)2σ 2

s ds =
2ℓ

3

 t

0
d fn(s)4

−
8ℓ

3

 t

0
fn(s)3d Xs . (A.24)

We first prove that the second term on the RHS of (A.24) is negligible. In fact, by the BDG
inequality,

E fn(s)6
≤ C(q/n1−η)3 (A.25)

uniformly in s. Hence

E

 t

0
fn(s)3d Xs

2

≤ E


·

0
fn(s)3d Xs,


·

0
fn(s)3d Xs


t

≤ E
 1

0
fn(s)6σ 2

s ds

≤ σ 2
+

 1

0
E fn(s)6ds

≤ C
 1

0

 q

n1−η

3
ds = O


q3

n3−3η


, (A.26)

and ℓ
 t

0 fn(s)3d Xs
p

−→ 0, in D[0, 1], as n → ∞. Now we deal with the first term in (A.24).
We shall only focus on the integral on [tiq+p , t∗] where t∗ is the largest ti ≤ t ; the remainder term
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is negligible. We then have

ℓ

 t∗

tiq+p

d fn(s)4
= ℓ


ti ≤t




q−1
j=0

q − j

q
1X ti− j

4

−


q−1
j=1

q − j

q
1X ti− j

4


= ℓ

ti ≤t

(1X ti )
4

  I
+ ℓ


ti ≤t

6(1X ti )
2


q−1
j=1

q − j

q
1X ti− j

2

  II
+ ℓ


ti ≤t

4(1X ti )
3


q−1
j=1

q − j

q
1X ti− j


  III

+ ℓ

ti ≤t

41X ti


q−1
j=1

q − j

q
1X ti− j

3

  IV
.

By the BDG inequality and Lemma 2,I = Op(ℓ/n1−2η) = op(1). Moreover, for term IV, by
computing its quadratic variation and using (A.25) we getIV = Op(ℓq3/2/n3/2−2η) = Op(1/(

√
ℓn−2η)) = op(1).

As to term III, we treat it in the same fashion as above by defining for s ∈ [ti−1, ti ),

X̆s := 4ℓ(Xs − X ti−1)
3


q−1
j=1

q − j

q
1X ti− j


;

X̆ (1)
s := 12ℓ(Xs − X ti−1)

2


q−1
j=1

q − j

q
1X ti− j


;

X̆ (2)
s := 12ℓ(Xs − X ti−1)


q−1
j=1

q − j

q
1X ti− j


.

Then

III =


ti ≤t

 ti

ti−1

d X̆s =

 t

0
X̆ (1)

s d Xs +

 t

0
X̆ (2)

s σ 2
s ds + op(1),

which is again an op(1) term by noting that (1) E(X̆ (1)
s )2

≤ Cℓ2
·1/n2−2η

·q/n1−η
≤ Cℓ/n2−3η;

and (2) E(X̆ (2)
s )2

≤ Cℓ2
· 1/n1−η

· q/n1−η
≤ Cℓ/n1−2η. Finally, by assumption C(6) we get the

convergence of termII and hence

⟨M, M⟩t
p

−→ 4
 t

0
wsσ

4
s ds for all t.

Next, we estimate the quadratic covariation between M and X . To do so, we first notice that,
by Itô’s formula,
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d⟨X, M⟩t =
1
q

q−1
k=0

d⟨X, Mk
⟩t =

1
q

q−1
k=0

2
√

ℓ

3
d(X t − X tk

∗
)3

−
1
q

q−1
k=0

2
√

ℓ(X t − X tk
∗
)2d X t , (A.27)

where

1
q

q−1
k=0

2
√

ℓ

3
d(X t − X tk

∗
)3

=
2
3

1
q

q−1
k=0

√
ℓ d[X, X, X ]

Sk
t .

We next show that the martingale term in (A.27) is negligible. Rearranging terms in the same
way as we did for M t , we have

Rt :=

 t

0

1
q

q−1
k=0

2
√

ℓ(Xs − X tk
∗
)2d Xs =

2
√

ℓ

q

 t

0
gn(s)d Xs,

where

gn(s) =



0, for s ∈ [0, tp);

i−p
j=0

(Xs − X ti− j )
2, for s ∈ [ti , ti+1) and p ≤ i < q + p;

q−1
j=0

(Xs − X ti− j )
2, for s ∈ [ti , ti+1) and i ≥ q + p.

Observe that by the Cauchy–Schwarz inequality and the BDG inequality,

E


q−1
j=0

(X ti+1 − X ti− j )
2

2

= E
q−1
j=0

(X ti+1 − X ti− j )
4
+ 2E

×


0≤ j<k≤q−1

(X ti+1 − X ti− j )
2(X ti+1 − X ti−k )

2

≤ Cσ 4
+q

q2

n2−2η
+ Cσ 4

+q(q − 1)
q2

n2−2η
= O


q4

n2−2η


.

Hence, uniformly in s ∈ [ti , ti+1) and i, Egn(s)2
≤ Cq4/n2−2η. Therefore, by the BDG

inequality again,

E(Rt )
2

≤ C
ℓ

q2 E
 t

0
gn(s)2σ 2

s ds ≤ C
ℓq4

n2−2ηq2 ≤ C
1

ℓn−2η
→ 0,

and hence Rt = op(1). Therefore, assumption C(7) and (A.27) imply that

⟨X, M⟩t
p

−→
2
3

 t

0
v̄sσ

3
s ds for all t.

It follows from the limit results in either Theorem B.4 (pp. 65–67) of Zhang [32] or
Theorem 2.28 of Mykland and Zhang [25] that, stably in law,
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M t H⇒
2
3

 t

0
v̄sσsd Xs +

 t

0


4ws −

4
9
v̄2

s


σ 4

s

1/2

d Bs, (A.28)

where Bt is a standard Brownian motion that is independent of F1.

Step 4

Clearly ⟨M4, M⟩t = 0. The overall results then follows from (A.22) and (A.28). �

Appendix B. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.spa.2013.04.002.
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